Математическое бюро
Прогнозирование на ОРЭМ

Отметки времени, для который необходимо определить будущие значения временного ряда, называются горизонтом прогнозирования. В старой литературе иногда использовали термин время упреждения, однако он не прижился. В зависимости от горизонта прогнозирования задача прогнозирования временного ряда, как правило, делится на следующие категории срочности:

  1. долгосрочный прогноз
  2. среднесрочный прогноз
  3. краткосрочный прогноз

Важно отметить, что для каждого временного ряда приведенная классификация имеет собственные диапазоны. Например, для временного ряда уровня сахара крови классификация срочности задачи прогнозирования обуславливается типами инсулина:

  1. ультракраткосрочный прогноз: до 3 – 4 часа
  2. краткосрочный прогноз: до 5 – 8 часов
  3. среднесрочный прогноз: до 16 – 24 часов

Для задачи прогнозирования энергопотребления и цен РСВ классификация следующая:

  1. ультракраткосрочный прогноз: до одного дня
  2. краткосрочный прогноз: от одного дня до недели
  3. среднесрочный прогноз: от одной недели до года
  4. долгосрочный прогноз: более чем на год вперед

Необходимо четко понимать, что для различных временных рядов, с различным временным разрешением классификация срочности задач прогнозирования индивидуальна.

Комментарии

Аватар пользователя andreybs
Андрей Борисов

Добрый день.

Подскажите, пожалуйста, каким образом можно оценить горизонт прогноза для модели линейной регрессии временного ряда? Например, мы исследовали выборку из n-последних значений ряда Y и получили уравнение линейной регрессии y=a*x+b. Очевидно, что модель будет действовать еще какое-то время, после чего коэффициенты "уплывут" и модель начнет "врать".

Допустим, еще N элементов ряда, начиная с текущего, будут описываться нашей моделью линейной регрессии (y=a*x+b) с коэффийиентами a и b. Пусть с вероятностью P~95% N элементов ряда будут лежать внутри канала с границами (y+2*sigma, y-2*sigma) где sigma - среднеквадратическое отклонение разницы между значением ряда Y и значением линейной регрессии y. Можем ли мы как-то оценить N?

Аватар пользователя chuchueva
Ирина Чучуева

Андрей, добрый день!

На мой взгляд не совсем корректно сформулирован вопрос. Горизонт прогнозирования следует из постановки задачи, например: мне нужно иметь 24 почасовых значения энергопотребления на завтра. Тут горизонт P = 24 и он не зависит от характеристики моего временного ряда.

У вас же вопрос касается не горизонта, а «срока действия модели»: если она подогнана на значениях n, то насколько значений вперед N ей можно доверять? Ваш вопрос: «Можем ли мы как-то оценить N?» Вопрос хороший, интересный! Первое, что приходит в голову — оценить эмпирически, то есть перебрать на реальных данных отклонения на некотором количестве значений, например, N = [1:100] и посмотреть есть ли какая-то стабильная зависимость роста отклонений при увеличении N. Если ее нет, то не факт, что это возможно сделать...

Но тут стоит еще подумать, может, что-то в голову придет интересное.

Аватар пользователя andreybs
Андрей Борисов

К сожалению, это не поможет, т.к. динамика отклонений может быть незначительна (разброс значений ряда относительно линии регрессии стабильный), а направление линии регрессии (коэффициент "а") будет сильно меняться.

Аватар пользователя chuchueva
Ирина Чучуева

Картинку хорошо бы поглядеть, так сообразить сложно! В форум ее разместите, в комментариях, по-моему, нельзя.

Аватар пользователя andreybs
Андрей Борисов

Я рассматриваю общий случай, поэтому картинки нет. Ищу статистические методы оценки продолжительности работы модели линейной регрессии. Пока вычитал только одно боле-менее подходящее решение - если решать обратную задачу оценки доверительных интервалов коэффициентов линейной регресии (критерий Стьюдента), то можно прийти от интевалала разброса угла наклона линии регрессии к расстоянию от точки вычисления коэффициентов регрессии. Попробую на практике, посмотрим, что из этого выйдет.

Аватар пользователя chuchueva
Ирина Чучуева

Андрей, посмотрите вот эту книгу: Draper N., Smith H. Applied regression analysis. New York: Wiley, In press, 1981. 693 p. — это лучшая книга о линейной (и не только) регрессии. Если там нет, то даже не знаю, чего посоветовать.

Аватар пользователя andreybs
Андрей Борисов

Спасибо, посмотрю.

Аватар пользователя
Сергей Пилецкий

Ирина, добрый день!Вы пытались пояснить тут вопрос о глубине прогноза???

Аватар пользователя chuchueva
Ирина Чучуева

Добрый день!

Честно говоря, я не понимаю, что означает глубина прогноза.

Аватар пользователя
Сергей Пилецкий

Я имел ввиду, что имея значения временного ряда, мы можем определить как далеко мы можем делать прогноз, пока расхождение фактических значений с прогнозными не станет слишком большим. Насколько я могу судить, это возможно определить, используя показатель Ляпунова и/или критерий Колмогорова.

Аватар пользователя chuchueva
Ирина Чучуева
Наверное, можно зайти с теоретической точки зрения и проверять показатель Ляпунова и/или критерий Колмогорова, но на практике прогноз нужен вопреки всему. Поэтому я в своей работе ни разу такими показателями/критериями не пользовалась. Для меня вопрос переобучения моделей упирается в мой опыт, я понимаю, когда и что стоит или не стоит переобучать. Если имели опыт проверки показателя/критерия для временных рядов, можете поделиться. Я с удовольствием почитаю.